Indirect acquisition of information in quantum mechanics: states associated with tail events

Wednesday, 23 November, 2016

Published in: 


The problem of reconstructing information on a physical system from data acquired in long sequences of direct (projective) measurements of some simple physical quantities - histories - is analyzed within quantum mechanics; that is, the quantum theory of indirect measurements, and, in particular, of non-demolition measurements is studied. It is shown that indirect measurements of time-independent features of physical systems can be described in terms of quantum-mechanical operators belonging to an algebra of asymptotic observables. Our proof involves associating a natural measure space with certain sets of histories of a system and showing that quantum-mechanical states of the system determine probability measures on this space. Our main result then says that functions on that space of histories measurable at infinity (i.e., functions that only depend on the tails of histories) correspond to operators in the algebra of asymptotic observables.


M. Ballesteros
M. Fraas
J. Fröhlich
B. Schubnel