Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics

Thursday, 21 March, 2019

Published in: 

arXiv:1903.08787

We compute tautological integrals over Quot schemes on curves and surfaces. After obtaining several explicit formulas over Quot schemes of dimension 0 quotients on curves (and finding a new symmetry), we apply the results to tautological integrals against the virtual fundamental classes of Quot schemes of dimension 0 and 1 quotients on surfaces (using also universality, torus localization, and cosection localization). The virtual Euler characteristics of Quot schemes of surfaces, a new theory parallel to the Vafa-Witten Euler characteristics of the moduli of bundles, is defined and studied. Complete formulas for the virtual Euler characteristics are found in the case of dimension 0 quotients on surfaces. Dimension 1 quotients are studied on K3 surfaces and surfaces of general type with connections to the Kawai-Yoshioka formula and the Seiberg-Witten invariants respectively. The dimension 1 theory is completely solved for minimal surfaces of general type admitting a nonsingular canonical curve. Along the way, we find a new connection between weighted tree counting and multivariate Fuss-Catalan numbers which is of independent interest.

Author(s): 

Dragos Oprea
Rahul Pandharipande