TBA equations and resurgent Quantum Mechanics

Monday, 12 November, 2018

Published in: 

arXiv:1811.04812

We derive a system of TBA equations governing the exact WKB periods in one-dimensional Quantum Mechanics with arbitrary polynomial potentials. These equations provide a generalization of the ODE/IM correspondence, and they can be regarded as the solution of a Riemann-Hilbert problem in resurgent Quantum Mechanics formulated by Voros. Our derivation builds upon the solution of similar Riemann-Hilbert problems in the study of BPS spectra in \mathcal{N}=2 gauge theories and of minimal surfaces in AdS. We also show that our TBA equations, combined with exact quantization conditions, provide a powerful method to solve spectral problems in Quantum Mechanics. We illustrate our general analysis with a detailed study of PT-symmetric cubic oscillators and quartic oscillators.

Author(s): 

Katsushi Ito
Marcos Mariño
Hongfei Shu