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a handle on strongly 
coupled problems is 
important progress. 

The approach we follow 
is quite a time-honored 
one in theoretical phys-
ics, namely making use 
of the symmetries of 
the problem and con-
sidering special subsec-
tors of the full theory 
in which simplifications 
occur. In our case, we 
consider CFTs with a 
global symmetry. Such 
a symmetry has by 
Noether’s theorem an 
associated conserved 
charge, which can be 
used to slice the Hilbert 
space of states of the 
theory into sectors 
labeled by their charge. 
We concentrate on a 
subsector of fixed charge, where we 
take the charge to be very large. It 
turns out that it is possible to write a 
low-energy effective theory in which 
the inverse of the large charge acts as 
a controlling parameter, bringing us 
back to a perturbative regime. 
Wilson’s notion of the effective 
action in which any term compatible 
with the symmetries of the problem 
must appear is conceptually very 

compelling. If we don’t have a way of 
truncating the effective theory, it is 
however of very limited practical use. 
Working at fixed charge allows us to 
do exactly that. In addition to using 
the constraints due to symmetry, we 
also use the fixed-charge scaling to 
discard those terms which are highly 

suppressed by inverse powers of the 
charge. In the problems we have 
studied so far, we were generally left 
with only a very small number of con-
tributions which are not suppressed. 
In other words, working at large 
charge allows us to make the step 
from an effective action with infinite-
ly many terms to an expansion which 
captures the low-energy physics in a 
handful of terms.

We approach the problem semiclas-
sically, solving the classical equations 
of motion at fixed charge and min-
imizing in order to find the low-
est-energy state at fixed charge. This 
ground state has the special feature 
of being time-dependent. Working at 
fixed charge breaks both the glob-

al and the spacetime symmetries. 
Part of this breaking is explicit and 
due to fixing the charge, part of it is 
spontaneous and due to the ground 
state itself. Spontaneous symme-
try breaking gives rise to massless 
Goldstone degrees of freedom. They 
represent the quantum fluctuations 
around the classical ground state and 
encode the low-energy physics in the 
effective action. If the global symme-
try we started from was just a U(1), 
then things are simple and we are left 
with a single (relativistic) Goldstone 
boson in terms of which we write a 
non-linear sigma model. The action 
contains all the terms compatible 
with conformal symmetry which are 
not suppressed by the large charge. 
If we start from a larger, non-Abelian 
global symmetry group, we need to 
first determine the symmetry-break-
ing pattern. Since the ground state 
breaks Lorentz invariance, we are 
generally left with both relativistic 
and non-relativistic Goldstone bos-
ons, which are distinguished by their 
dispersion relations (linear versus 
quadratic in the momentum). 
Once we have written down the 

In theoretical physics, our best tool 
to calculate observable quantities is 
perturbation theory. We know very 
little about strongly coupled systems. 
Any new tool to access the strongly 
coupled regime is therefore most 
welcome. We found that working 
in sectors of large charge is way of 
compensating the effects of strong 
coupling.

I am a string theorist by training and 
in the course of my career I have 
gone through what resembles a 
random walk in the space of prob-
lems in formal theoretical physics. I 
started out in string phenomenology 
at a time when flux compactifications 
were a hot topic. I was most at-
tracted by their most formal aspect, 
namely the algebraic geometry of 
the compactification manifolds. 
Motivated primarily by my interest 
in the (much more formal) field of 
topological string theory, I went to 
Amsterdam to work with Robbert 
Dijkgraaf for my first postdoc. While 

I never actively worked on this topic, 
it lead me to become interested in 
the connections between integrable 
systems and supersymmetric gauge 
theories. Realizing such deformed 
gauge theories appearing in these 
correspondence within string theo-
ry came next. This topic, and brane 
realizations of supersymmetric gauge 
theories in general kept me busy for 
quite a while through my moves to 
Japan and then to CERN.

To my own surprise, I ended up add-
ing a quite different line of research 
to my collection. This happened in 
spring 2015, just after having started 
my new job at the University of Bern. 
I was in Japan, visiting my long-time 
collaborator Simeon Hellerman 
together with my collaborator (and 
husband) Domenico Orlando. For me, 
every new project tends to be a jour-
ney into the unknown, not just in the 
obvious sense that we don’t know the 
end result of a research project when 
we start it, but also in the sense that 

it often involves physics I previously 
knew only little about. This topic was 
no exception. It is centered on the 
study of special sectors of three- and 
four-dimensional conformal field the-
ories (CFTs). The most surprising part 
was that the problem had nothing to 
do with string theory or even super-
symmetry (even though it is possible 
to consider superconformal field 
theories (SCFTs)). 

Conformal field theories are, as the 
name suggests, invariant under con-
formal transformations. This gives 
rise to special features. If we know 
the operator dimension and spin of 
each local operator, conformal sym-
metry fixes the two-point functions 
up to normalization. If we further-
more know the 3-point function 
coefficients, we can solve the theory 
completely, in the sense that we can 
write down all higher correlation 
functions. 

CFTs play an important role in 
theoretical physics, as they show 
up in a variety of contexts, such as 
critical points characterizing second 
order phase transitions, fixed points 
in renormalization group flows, 
and even quantum gravity via the 
AdS/CFT correspondence. CFTs are 
scale-free, meaning they contain no 
characteristic length or energy scale. 
This means also that we have no di-
mensionful small parameter in which 
to perform a perturbative expansion. 
The dimensionless couplings in a CFT 
are generically of order one. While 
in two dimensions the special nature 
of the conformal group allows us to 
use a host of analytic techniques, in 
higher-dimensional CFTs things are 
much more tricky. Of course, we have 
some methods at our disposal, such 
as large-N expansions, (small) epsilon 
expansions and the conformal boot-
strap. And it is possible to run Mon-
te-Carlo simulations on the lattice at 
strong coupling. But analytic results 
are still few and far between and any 
new approach that can help us get 

I am a string theorist by training and in the course 
of my career I have gone through what resembles 
a random walk in the space of problems in formal 
theoretical physics. 

Simplify your life 
by going 

large 
Susanne Reffert discussing large charge with Luis Alvarez-Gaume and Domenico Orlando at the Simons Center for 
Geometry and Physics. Photo by Jean-François Dars.



6 | © SwissMAP Perspectives | 2019 2019 | © SwissMAP Perspectives | 7

effective action in the form of a large-
charge expansion, we can start cal-
culating the conformal data, namely 
operator dimensions and three-point 
coefficients, from which the gener-
al n-point functions can be deter-
mined. The energy of the ground 
state at fixed and large charge Q in 
particular gives via the state-opera-
tor correspondence of CFT directly 
the conformal dimension of the 
lowest-lying state of charge Q. The 
biggest contribution to the ground-
state energy comes from the classical 
ground state, while the vacuum ener-
gy of the relativistic Goldstones gives 
a subleading contribution.

One way of using the large-charge 
method is to apply it to known CFTs, 
such as for example the Wilson-Fisher 
fixed point in the infrared of the O(N) 
vector model in three dimensions. 
Another stance one could take is to 
simply assume that a certain CFT 
exists and apply the large-charge 
method to it. We have worked with 
models motivated from both con-
densed matter physics and particle 
physics. The large-charge expan-
sion even works for non-relativistic 
systems with Schrödinger symmetry 
(as opposed to conformal symmetry).  
An example is the unitary Fermi gas 
which can be experimentally realized 
in the laboratory via cold atoms in a 
trap. Connecting back to more for-
mal theory topics, the large-charge 
expansion can be applied also to 
superconformal field theories at large 
R-charge. Here, we found in particu-

lar that cases with a moduli space of 
vacua behave very differently from 
theories with one discrete vacuum I 
described above.

There is in general little known about 
the strongly-coupled models we are 
studying at large charge, so we have 
few results to compare our predic-
tions to. But whenever there are 
results to compare to, be it on the lat-
tice or from supersymmetric localiza-
tion in the case of SCFTs, the confir-
mation of our predictions has been 
strikingly strong. When comparing 
with numerical results from lattice 
calculations, we found that our for-
mulae derived at large charge even 
work down to very small values of the 
charge, which is highly unexpected 
(see Figure 1). The largest charge 
used on the lattice was 12, which is 
by no means a very large charge, but 
the agreement remains excellent 
even down to charge one. This has 
taken us very much by surprise, as it 
is far from the regime in which our 
effective theory is valid. 
In the case of N=2 SQCD with 4 fla-

vors, we could compare to a super-
symmetric localization calculation 
which has again shown an amazing 
agreement and even allowed us to 
estimate the exponential corrections 
to the large charge expansion (see 
Figure 2).
 
Working on CFTs at large charge 
has been an extremely interesting 
and enriching experience for me, 
both scientifically and personally. 
On the one hand, this is the closest 
to “real-world” physics I have ever 
come, and I am really enjoying it. 
On the other hand, the problem has 
appealed to quite a varied group 
of people, getting me into contact 
with subfields I had known relatively 
little about before. Working on large 
charge not only got me talking to 
new people but has even lead to very 
interesting new collaborations out-
side my usual string theory commu-
nity, such as the one with two lattice 
theorists, who recently verified our 
prediction for the O(4) vector model 
to high precision. 

Since our original paper in 2015, 
Simeon Hellerman and his (now 
former) student Masataka Watanabe, 
Domenico and I have continued to 
push the large-charge expansion 
forward in varying configurations of 
new and old collaborators. But it’s 
been especially great to see that the 
topic has attracted a number of inde-
pendent groups around the globe. In 
late summer of this year, I am co-or-
ganizing (together with Domenico, 
Simeon and Luis Alvarez-Gaume) a 
1-month workshop at the Simons 
Center for Geometry and Physics, 
where we are hoping to bring togeth-
er a varied set of people interested 
in systems at large quantum number 
and related topics in order to explore 
new approaches, connections and 
applications. 

I believe that we’ve only scratched 
the surface of the power of the 
large-charge expansion and that the 
method can be widely applied and 
developed in several new directions. 
Since we are in the unique position of 
having a good theoretical handle on 
strongly coupled systems, the large-
charge approach might for example 
allow us to explicitly check conjec-
tured (strong/weak) dualities. 

When we first started working on 
large charge four years ago, at least 
I had no idea what I was getting into. 
It’s been quite a ride and I’ve learned 
so much! The large-charge expan-
sion has exceeded our boldest hopes 
when we started on the project. I 
am excited both to be part of and to 

watch its development and hope that 
it holds many more exciting surprises 
for us. Who knows where it will lead 
me next on my path of theoretical 
physics research?

There is in general little known about the strongly- 
coupled models we are studying at large charge, 
so we have few results to compare our predictions 
to. But whenever there are results to compare 
to, the confirmation of our predictions has been 
strikingly strong. 

Working on CFTs at 
large charge has been 
an extremely interest-
ing and enriching ex-
perience for me, both 
scientifically and per-
sonally. 

Figure 2 - Plot of the universal part of the 3-pt function coefficient of N=2 SQCD with 4 flavors as 
function of the gauge coupling for different values of the R-charge. The dotted lines represent the 
exact numerical results from the localization computation, the solid lines are our large-charge 
predictions, the numbers on the right side give the value of the fixed charge. 
Source: unpublished, based on results from “Universal correlation functions in rank 1 SCFTs”, S.Hel-
lerman, Sh.Maeda, D.Orlando, S. Reffert, M.Watanabe, arXiv:1804.01535
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Figure 1 - Plot of the conformal dimension D(j, j) as a function of the charge j for the lowest oper-
ator of given charge in the O(4) vector model in three dimensions. The squares represent the data 
obtained using Monte-Carlo calculations on the lattice. The solid line is the large-charge prediction.
Source: “Conformal dimensions in the large charge sectors at the O(4) Wilson-Fisher fixed point”,  
D.Banerjee, Sh.Chandrasekharan, D.Orlando, S.Reffert, arXiv:1902.09542
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