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Overview

Let Ω be a finite configuration space of a physical system. The energy of the
configuration ω ∈ Ω is H(ω).

Example: Ising model on a finite graph (V,E):

Ω = {−1,+1}V , H(ω) ..= −
∑

{x,y}∈E

ωxωy .

Gibbs distribution: probability measure µ on Ω that has fixed energy and
maximal entropy.



Entropy

Quantify the disorder or “mixed-up-ness” [Gibbs, 1903] of the measure µ.
Informally:

S = log
∣∣{microstates giving rise to the observed macrostate}

∣∣.
If µ is the uniform distribution
on Ω (all configurations of Ω
are equally likely) then

S(µ) = log |Ω|.

Why log?

Entropy should be extensive. Putting two systems, 1 and 2, together amounts
to Ω = Ω1 × Ω2 and µ = µ1 ⊗ µ2. Hence, S(µ) = S(µ1) + S(µ2).



How to define S for general µ? Simple model: put n balls into the boxes of Ω:

microstate = individual balls’ locations

macrostate = number of balls in each box.

More formally: To b = (b1, b2, . . . , bn) ∈ Ωn (individual balls’ locations) assign
Nω(b) ..= |{1 6 i 6 n .. bi = ω}| (number of balls in box ω).

Then b is the microstate and N(b) = (Nω(b))ω∈Ω is the associated
macrostate.

For N ∈ NΩ define

W (N) ..= |{b ∈ Ωn .. N(b) = N}| .

Exercice. Suppose that b1, b2, . . . are i.i.d. random variables in Ω with law µ.
Then, almost surely as n→∞,

1

n
logW (N(b)) −→ S(µ) ..= −

∑
ω∈Ω

µ(ω) logµ(ω) .



The quantity

S(µ) = −
∑
ω∈Ω

µ(ω) logµ(ω)

is the (Boltzmann-Gibbs-Maxwell-Shannon) entropy of the probability measure
µ.

Exercise.

• 0 6 S(µ) 6 log|Ω|.
• S(µ) = 0 if and only if µ = δω0

for some ω0 ∈ Ω.

• S(µ) = log|Ω| if and only if µ is uniform on Ω.



The Gibbs measure

Define the energy of the distribution µ as

U(µ) ..=
∑
ω∈Ω

H(ω)µ(ω) .

Maximize the entropy S(µ) under fixed energy U(µ).

Exercise.

µ(ω) =
1

Z
e−βH(ω) , Z ..=

∑
ω∈Ω

e−βH(ω) .

• β is a Lagrange multiplier with the interpretation of the inverse
temperature, β = 1/T .

• Z is the partition function.

• The (Helmholtz) free energy is F ..= −T logZ. We obtain the
thermodynamic relation

F = U − TS .



Infinite configuration space

In most interesting applications, Ω is infinite, and the notion of Gibbs measure
is much more subtle.

It is best formulated in the framework of spin systems: A probability space
(S, λ) is assigned to each site of a lattice L. The configuration space is
Ω = SL with configuration ω = (ωx)x∈L.

Notations: Let Λ ⊂ L.

• ωΛ = (ωx)x∈Λ and ω = ωΛωΛc .

• λ(dωΛ) =
∏
x∈Λ λ(dωx).

For each finite A ⊂ L, introduce a potential ΦA that depends only on ωA.

Defining H(ω) ..=
∑
A⊂L ΦA(ω), we want to define the Gibbs measure

µ(dω) =
1

Z
e−βH(ω) λ(dω) , Z ..=

∫
λ(dω) e−βH(ω)

Only makes sense for finite L.



The Dobrushin-Lanford-Ruelle (DLR) equation

Let Λ ⊂ L be finite. For a boundary condition η ∈ SL define the conditional
energy

H(ωΛ|ηΛc) ..=
∑

A⊂L:A∩Λ6=∅

ΦA(ωΛηΛc)

and the conditional partition function

ZηΛ
..=

∫
λ(dωΛ) e−βH(ωΛ|ηΛc ) .

Λ

Λc



Exercise. For finite L and bounded f : Ω→ R we have∫
µ(dω) f(ω) =

∫
µ(dη)

1

ZηΛ

∫
λ(dωΛ) e−βH(ωΛ|ηΛc ) f(ωΛηΛc) . (DLR)

For infinite L, take (DLR) as the definition of a Gibbs measure:

Definition. A probability measure µ satisfying (DLR) for all finite Λ ⊂ L and f
of bounded support is called a Gibbs measure associated with (ΦA).

Existence is easy under a general locality assumption on (ΦA) (weak
compactness argument).

Uniqueness is delicate and in general wrong: coexistence of phases (dependence
on boundary conditions).


