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The Boltzmann Equation

Boltzmann (1872) and Maxwell (1867)

attempt at a realistic description of rarefied gases

Boltzmann equation

(∂t + v · ∇x)f (t , x , v) = Q(f , f )(t , x , v)

f : R× R3 × R3 −→ R+ probability density

Q(f , f ) =
∫
R3

dv∗
∫

S2
dω B(ω, v − v∗)

× {f (t , x , v ′∗)f (t , x , v ′)− f (t , x , v∗)f (t , x , v)}
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Conservation laws and H-Theorem

Mass, Momentum, Energy∫∫
R3×R3

ϕ(v) f (t , x , v)dx dv =

∫∫
R3×R3

ϕ(v) f0(x , v)dx dv

f solution to the Boltzmann eq. with initial datum f0 and ϕ(v) = 1, vi , v2.
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Mass, Momentum, Energy∫∫
R3×R3

ϕ(v) f (t , x , v)dx dv =

∫∫
R3×R3

ϕ(v) f0(x , v)dx dv

f solution to the Boltzmann eq. with initial datum f0 and ϕ(v) = 1, vi , v2.

Entropy

H(t) :=

∫∫
R3×R3

f (t , x , v) ln f (t , x , v)dx dv

Theorem (H Theorem, Boltzmann ‘72)
If f (t) is a regular enough solution to the Boltzmann equation, then

H(t) ≤ H(0)
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PDE viewpoint: well-posedness

Homogeneous setting: many results since Carleman 1933
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Non-homogenous setting:
I local in time (several results)
I global in time for small data / close to equilibrium data

(several results since Guo 2004)
I renormalized solutions (Di Perna and Lions 1989)

Global well-posedness?

On the one hand:

(∂t + v · ∇x)f (t , x , v)

=

∫
R3

dv∗
∫

S2
dω B(ω, v − v∗){f (t , x , v ′∗)f (t , x , v ′)− f (t , x , v∗)f (t , x , v)}

looks like
∂t f (t) ∼ f (t)2 =⇒ only local in time!
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Non-homogenous setting:
I local in time (several results)
I global in time for small data / close to equilibrium data

(several results since Guo 2004)
I renormalized solutions (Di Perna and Lions 1989)

Global well-posedness?

On the other hand:

(∂t + v · ∇x)f (t , x , v)

=

∫
R3

dv∗
∫

S2
dω B(ω, v − v∗){f (t , x , v ′∗)f (t , x , v ′)−f (t , x , v∗)f (t , x , v)}

there might be cancellations!
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Statistical mechanics viewpoint: derivation

Classical particles

micro-scale macro-scale

Newton’s law (N ' 1023) =⇒ Boltzmann’s equation

scaling limit

=⇒
effective theory

collective description
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Statistical mechanics viewpoint: derivation

Newton: time reversible dynamics

d
dt

xi(t) = vi(t) ,

d
dt

vi(t) = 0 ,

i = 1, . . . ,N

+ boundary conditions
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Newton: time reversible dynamics

d
dt

xi(t) = vi(t) ,

d
dt

vi(t) = 0 ,

i = 1, . . . ,N

+ boundary conditions

Liouville equation:

∂t fN +
N∑

i=1

vi · ∇xi fN = 0 + b.c.

j-particle marginal:

f (j)N (t , x1, v1, . . . , xj , vj) =

∫
fN(t , x1, v1, . . . , xN , vN)dxj+1dvj+1 . . . dxNdvN
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Statistical mechanics viewpoint: derivation
The Boltzmann-Grad limit: N particles of radius ε, N →∞ and ε→ 0

𝜀
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Statistical mechanics viewpoint: derivation
The Boltzmann-Grad limit: N particles of radius ε, low density regime

𝜀t

O(𝜀d-1)
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Statistical mechanics viewpoint: derivation

The Boltzmann-Grad limit: N →∞ with the constraint Nεd−1 = O(1)

𝜀t O(N𝜀d-1)
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Statistical mechanics viewpoint: derivation

∂t fN +
N∑

i=1

vi · ∇xi fN = 0 + b.c.

and consider the first marginal f (1)N .
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Statistical mechanics viewpoint: derivation

(∂t + v · ∇x)f
(1)
N (t , x , v) = (N − 1)ε2

∫
R3

∫
S2

B(ω, v − v∗)

× {f (2)N (t , x − εω, v ′∗, x , v
′)− f (2)N (t , x + εω, v∗, x , v)} dω dv∗

to be compared with

(∂t + v · ∇x)f (t , x , v) =
∫
R3

∫
S2

B(ω, v − v∗)

× {f (t , x , v ′∗)f (t , x , v ′)− f (t , x , v∗)f (t , x , v)} dω dv∗

Propagation of chaos

f (2)N (0) ∼ f⊗2
0 =⇒ f (2)N (t) ∼ f (t)⊗2

where f is a solution of the Boltzmann equation with initial datum f0.
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Statistical mechanics viewpoint: derivation

Accurate study of pathological configurations
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State of the art and major open problems

Lanford (1975): hard spheres, short times

Gallagher, Saint-Raymond, Texier (2013): quantitative analysis
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Gallagher, Saint-Raymond, Texier (2013): quantitative analysis

Class of interactions:
∗ Short range potentials:

Gallagher, Saint-Raymond, Texier (2013), Pulvirenti, C.S., Simonella (2014)

∗ Triple interactions: Ampatzoglou, Pavlovic (2019, 2020)

∗ Long range potentials: ?

Time of validity:
∗ Near the vacuum: Illner, Pulvirenti (1986)

∗ Linear and linearized setting:
Bodineau, Gallagher, Saint-Raymond (2016, 2017), + Simonella (2020)

∗ Nonlinear setting: ? (related to the global existence for the PDE)
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State of the art and major open problems

...and many other open problems
(boundaries, boundary layers, molecular interactions, . . . )

Plenty of work to be done!
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