SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Local normal forms of dynamical systems with a singular underlying geometric structure

Kai Jiang, Tudor S. Ratiu, Nguyen Tien Zung

22/4/19 Published in : arXiv:1904.09784

In this paper we prove the existence of a simultaneous local normalization for couples (X,\mathcal{G}), where X is a vector field which vanishes at a point and \mathcal{G} is a singular underlying geometric structure which is invariant with respect to X, in many different cases: singular volume forms, singular symplectic and Poisson structures, and singular contact structures. Similarly to Birkhoff normalization for Hamiltonian vector fields, our normalization is also only formal, in general. However, when \mathcal{G} and X are (real or complex) analytic and X is analytically integrable or Darboux-integrable then our simultaneous normalization is also analytic. Our proofs are based on the toric approach to normalization of dynamical systems, the toric conservation law, and the equivariant path method. We also consider the case when \mathcal{G} is singular but X does not vanish at the origin.

Entire article

Phase I & II research project(s)

  • Quantum Systems
  • Field Theory
  • Geometry, Topology and Physics

Magnetization in the zig-zag layered Ising model and orthogonal polynomials

The M-theory origin of global properties of gauge theories

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved