SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Action-angle coordinates on coadjoint orbits and multiplicity free spaces from partial tropicalization

Anton Alekseev, Benjamin Hoffman, Jeremy Lane, Yanpeng Li

30/3/20 Published in : arXiv:2003.13621

Coadjoint orbits and multiplicity free spaces of compact Lie groups are important examples of symplectic manifolds with Hamiltonian groups actions. Constructing action-angle variables on these spaces is a challenging task. A fundamental result in the field is the Guillemin-Sternberg construction of Gelfand-Zeitlin integrable systems for the groups K=U(n),SO(n). Extending these results to groups of other types is one of the goals of this paper.
Partial tropicalizations are Poisson spaces with constant Poisson bracket built using techniques of Poisson-Lie theory and the geometric crystals of Berenstein-Kazhdan. They provide a bridge between dual spaces of Lie algebras Lie(K)∗ with linear Poisson brackets and polyhedral cones which parametrize the canonical bases of irreducible modules of G=K^\mathbb{C}.
We generalize the construction of partial tropicalizations to allow for arbitrary cluster charts, and apply it to questions in symplectic geometry. For each regular coadjoint orbit of a compact group K, we construct an exhaustion by symplectic embeddings of toric domains. As a by product we arrive at a conjectured formula for Gromov width of regular coadjoint orbits. We prove similar results for multiplicity free K-spaces.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Recent developments on the well-posedness theory for Vlasov-type equations

Charging the Conformal Window

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved