SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Bootstrapping Smooth Conformal Defects in Chern-Simons-Matter Theories

Barak Gabai, Amit Sever, De-liang Zhong

28/12/23 Published in : arXiv:2312.17132

The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open string partition function in AdS. In this paper, we develop a bootstrap method for studying them and apply it to conformal line defects in Chern-Simons matter theories. In these cases, the line bootstrap is based on three minimal assumptions -- conformal invariance of the line defect, large N factorization, and the spectrum of the two lowest-lying operators at the end of the line. On the basis of these assumptions, we solve the one-dimensional CFT on the line and systematically compute the defect expectation value in an expansion around the straight line. We find that the conformal symmetry of a straight defect is insufficient to fix the answer. Instead, imposing the conformal symmetry of the defect along an arbitrary curved line leads to a functional bootstrap constraint. The solution to this constraint is found to be unique.

Entire article

Phase I & II research project(s)

  • Field Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

A short review on Improvements and stability for some interpolation inequalities

On Algebraization in Low-Dimensional Topology

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved