SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

A cavity quantum electrodynamics implementation of the Sachdev--Ye--Kitaev model

Philipp Uhrich, Soumik Bandyopadhyay, Nick Sauerwein, Julian Sonner, Jean-Philippe Brantut, Philipp Hauke

20/3/23 Published in : arXiv:2303.11343

The search for a quantum theory of gravity has led to the discovery of quantum many-body systems that are dual to gravitational models with quantum properties. The perhaps most famous of these systems is the Sachdev-Ye-Kitaev (SYK) model. It features maximal scrambling of quantum information, and opens a potential inroad to experimentally investigating aspects of quantum gravity. A scalable laboratory realisation of this model, however, remains outstanding. Here, we propose a feasible implementation of the SYK model in cavity quantum electrodynamics platforms. Through detailed analytical and numerical demonstrations, we show how driving a cloud of fermionic atoms trapped in a multi-mode optical cavity, and subjecting it to a spatially disordered AC-Stark shift retrieves the physics of the SYK model, with random all-to-all interactions and fast scrambling. Our work provides a blueprint for realising the SYK model in a scalable system, with the prospect of studying holographic quantum matter in the laboratory.

Entire article

Phase I & II research project(s)

  • String Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Sharp metastability transition for two-dimensional bootstrap percolation with symmetric isotropic threshold rules

Excursion decomposition of the 2D continuum GFF

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved