SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Configuration Spaces of Surfaces

  • Ricardo Campos
  • Najib Idrissi
  • Thomas Willwacher

27/11/19 Published in : arXiv:1911.12281

We compute small rational models for configuration spaces of points on oriented surfaces, as right modules over the framed little disks operad. We do this by splitting these surfaces in unions of several handles. We first describe rational models for the configuration spaces of these handles as algebras in the category of right modules over the framed little disks operad. We then express the configuration spaces of the surface as an "iterated Hochschild complex" of these algebras with coefficients in the module given by configurations in a sphere with holes.
Physically, our results may be interpreted as saying that the partition function of the Poisson-σ-model on closed surfaces has no quantum corrections, i.e., no terms coming from Feynman diagrams of positive loop order.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Driven black holes: from Kolmogorov scaling to turbulent wakes

Gaussian processes reconstruction of modified gravitational wave propagation

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved