SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Dynamics of mean-field bosons at positive temperature

Marco Caporaletti, Andreas Deuchert, Benjamin Schlein

31/3/22 Published in : arXiv:2203.17204

We study the time-evolution of an initially trapped weakly interacting Bose gas at positive temperature, after the trapping potential has been switched off. It has been recently shown in arXiv:2009.00992 that the one-particle density matrix of Gibbs states of the interacting trapped gas is given, to leading order in N, as N \to \infty, by the one of the ideal gas, with the condensate wave function replaced by the minimizer of the Hartree energy functional. We show that this structure is stable with respect to the many-body evolution in the following sense: the dynamics can be approximated in terms of the time-dependent Hartree equation for the condensate wave function and in terms of the free evolution for the thermally excited particles. The main technical novelty of our work is the use of the Hartree-Fock-Bogoliubov equations to define a fluctuation dynamics.

Entire article

Phase I & II research project(s)

  • Quantum Systems

A second order upper bound for the ground state energy of a hard-sphere gas in the Gross-Pitaevskii regime

Singular symplectic spaces and holomorphic membranes

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved