SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Effective Dynamics of Local Observables for Extended Fermi Gases in the High-Density Regime

Luca Fresta, Marcello Porta, Benjamin Schlein

23/9/24 Published in : arXiv:2409.14841

We give a rigorous derivation of the Hartree equation for the many-body dynamics of pseudo-relativistic Fermi systems at high density \varrho \gg 1, on arbitrarily large domains, at zero temperature. With respect to previous works, we show that the many-body evolution can be approximated by the Hartree dynamics locally, proving convergence of the expectation of observables that are supported in regions with fixed volume, independent of ϱ. The result applies to initial data describing fermionic systems at equilibrium confined in arbitrarily large domains, under the assumption that a suitable local Weyl-type estimate holds true. The proof relies on the approximation of the initial data through positive temperature quasi-free states, that satisfy strong local semiclassical bounds, which play a key role in controlling the growth of the local excitations of the quasi-free state along the many-body dynamics.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Differential equations of Mathematical Physics
  • Quantum information and many body theory

What is the graviton pole made of?

The spectral density of astrophysical stochastic backgrounds

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved