SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Experimental genuine quantum nonlocality in the triangle network

Ning-Ning Wang, Chao Zhang, Huan Cao, Kai Xu, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, Nicolas Gisin, Tamás Kriváchy, Marc-Olivier Renou

27/1/24 Published in : arXiv:2401.15428

In the last decade, it was understood that quantum networks involving several independent sources of entanglement which are distributed and measured by several parties allowed for completely novel forms of nonclassical quantum correlations, when entangled measurements are performed. Here, we experimentally obtain quantum correlations in a triangle network structure, and provide solid evidence of its nonlocality. Specifically, we first obtain the elegant distribution proposed in (Entropy 21, 325) by performing a six-photon experiment. Then, we justify its nonlocality based on machine learning tools to estimate the distance of the experimentally obtained correlation to the local set, and through the violation of a family of conjectured inequalities tailored for the triangle network.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Quantum information and many body theory

Affine Classical Lie Bialgebras for AdS/CFT Integrability

Tautological projection for cycles on the moduli space of abelian varieties

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved