We explore flavor dynamics in the broad scenario of a strongly interacting light Higgs (SILH). Our study focuses on the mechanism of partial fermion compositeness, but is otherwise as systematic as possible. Concretely, we classify the options for the underlying flavor (and CP) symmetries, which are necessary in order to bring this scenario safely within the range of present and future explorations. Our main goal in this context is to provide a practical map between the space of hypotheses (the models) and the experimental ground that will be explored in the medium and long term, in both indirect and direct searches, in practice at HL-LHC and Belle II, in EDM searches and eventually at FCC-hh. Our study encompasses scenarios with the maximal possible flavor symmetry, corresponding to minimal flavor violation (MFV), scenarios with no symmetry, corresponding to the so-called flavor anarchy, and various intermediate cases that complete the picture. One main result is that the scenarios that allow for the lowest new physics scale have intermediate flavor symmetry rather than the maximal symmetry of MFV models. Such optimal models are rather resilient to indirect exploration via flavor and CP violating observables, and can only be satisfactorily explored at a future high-energy collider. On the other hand, the next two decades of indirect exploration will significantly stress the parameter space of a large swat of less optimal but more generic models up to mass scales competing with those of the FCC-hh.