We give a short proof of the existence of a small piece of null infinity for (3+1)-dimensional spacetimes evolving from asymptotically flat initial data as solutions of the Einstein vacuum equations. We introduce a modification of the standard wave coordinate gauge in which all non-physical metric degrees of freedom have strong decay at null infinity. Using a formulation of the gauge-fixed Einstein vacuum equations which implements constraint damping, we establish this strong decay regardless of the validity of the constraint equations. On a technical level, we use notions from geometric singular analysis to give a streamlined proof of semiglobal existence for the relevant quasilinear hyperbolic equation.