SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Flow equations for generalised T\bar{T} deformations

Guzmán Hernández-Chifflet, Stefano Negro, Alessandro Sfondrini

27/11/19 Published in : arXiv:1911.12233

We consider the most general set of integrable deformations extending the T\bar{T} deformation of two-dimensional relativistic QFTs. They are CDD deformations of the theory's factorised S-matrix related to the higher-spin conserved charges. Using a mirror version of the generalised Gibbs ensemble, we write down the finite-volume expectation value of the higher-spin charges, and derive a generalised flow equation that every charge must obey under a generalised T\bar{T} deformation. This also reproduces the known flow equations on the nose.

Entire article

Phase I & II research project(s)

  • String Theory

Genuine Quantum Nonlocality in the Triangle Network

T\bar{T} deformations and integrable spin chains

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved