SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Goldman-Turaev formality implies Kashiwara-Vergne

Anton Alekseev, Nariya Kawazumi, Yusuke Kuno, Florian Naef

4/12/18 Published in : arXiv:1812.01159

Let Σ be a compact connected oriented 2-dimensional manifold with non-empty boundary. In our previous work, we have shown that the solution of generalized (higher genus) Kashiwara-Vergne equations for an automorphism F \in {\rm Aut}(L) of a free Lie algebra implies an isomorphism between the Goldman-Turaev Lie bialgebra \mathfrak{g}(Σ) and its associated graded {\rm gr}\, \mathfrak{g}(Σ). In this paper, we prove the converse: if F induces an isomorphism \mathfrak{g}(Σ) \cong {\rm gr} \, \mathfrak{g}(Σ), then it satisfies the Kashiwara-Vergne equations up to conjugation. As an application of our results, we compute the degree one non-commutative Poisson cohomology of the Kirillov-Kostant-Souriau double bracket. The main technical tool used in the paper is a novel characterization of conjugacy classes in the free Lie algebra in terms of cyclic words.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

On osculating framing of real algebraic links

Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved