SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Gravity with torsion as deformed BF theory

Alberto S. Cattaneo, Leon Menger, Michele Schiavina

12/10/23 Published in : arXiv:2310.01877

We study a family of (possibly non topological) deformations of BF theory for the Lie algebra obtained by quadratic extension of \mathfrak{so}(3,1) by an orthogonal module. The resulting theory, called quadratically extended General Relativity (qeGR), is shown to be classically equivalent to certain models of gravity with dynamical torsion. The classical equivalence is shown to promote to a stronger notion of equivalence within the Batalin--Vilkovisky formalism. In particular, both Palatini--Cartan gravity and a deformation thereof by a dynamical torsion term, called (quadratic) generalised Holst theory, are recovered from the standard Batalin--Vilkovisky formulation of qeGR by elimination of generalised auxiliary fields.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Phase III direction(s)

  • From Field Theory to Geometry and Topology

Solid-body trajectoids shaped to roll along desired pathways

Painlevé kernels and surface defects at strong coupling

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved