SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

The Holographic Dual of Strongly γ-deformed N=4 SYM Theory: Derivation, Generalization, Integrability and Discrete Reparametrization Symmetry

Nikolay Gromov, Amit Sever

27/8/19 Published in : arXiv:1908.10379

Recently, we constructed the first-principle derivation of the holographic dual of N=4 SYM in the double-scaled γ-deformed limit directly from the CFT side. The dual fishchain model is a novel integrable chain of particles in AdS5. It can be viewed as a discretized string and revives earlier string-bit approaches. The original derivation was restricted to the operators built out of one of two types of scalar fields. In this paper, we extend our results to the general operators having any number of scalars of both types, except for a very special case when their numbers are equal. Interestingly, the extended model reveals a new discrete reparametrization symmetry of the "world-sheet", preserving all integrals of motion. We use integrability to formulate a closed system of equations, which allows us to solve for the spectrum of the model in full generality, and present non-perturbative numerical results. We show that our results are in agreement with the Asymptotic Bethe Ansatz of the fishnet model up to the wrapping order at weak coupling.

Entire article

Phase I & II research project(s)

  • Field Theory

Non-perturbative approaches to the quantum Seiberg-Witten curve

The Epsilon Expansion Meets Semiclassics

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved