SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Holography and Localization of Information in Quantum Gravity

Eyoab Bahiru, Alexandre Belin, Kyriakos Papadodimas, Gabor Sarosi, Niloofar Vardian

20/1/23 Published in : arXiv:2301.08753

Within the AdS/CFT correspondence, we identify a class of CFT operators which represent diff-invariant and approximately local observables in the gravitational dual. Provided that the bulk state breaks all asymptotic symmetries, we show that these operators commute to all orders in 1/N with asymptotic charges, thus resolving an apparent tension between locality in perturbative quantum gravity and the gravitational Gauss law. The interpretation of these observables is that they are not gravitationally dressed with respect to the boundary, but instead to features of the state. We also provide evidence that there are bulk observables whose commutator vanishes to all orders in 1/N with the entire algebra of single-trace operators defined in a space-like separated time-band. This implies that in a large N holographic CFT, the algebra generated by single-trace operators in a short-enough time-band has a non-trivial commutant when acting on states which break the symmetries. It also implies that information deep in the interior of the bulk is invisible to single-trace correlators in the time-band and hence that it is possible to localize information in perturbative quantum gravity.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Hilbert space of Quantum Field Theory in de Sitter spacetime

Perturbing the symmetric orbifold from the worldsheet

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2023 - All rights reserved