SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Hydrodynamics without boosts

  • Igor Novak
  • Julian Sonner
  • Benjamin Withers

6/11/19 Published in : arXiv:1911.02578

We construct the general first-order hydrodynamic theory invariant under time translations, the Euclidean group of spatial transformations and preserving particle number, that is with symmetry group \mathbb{R}_t×ISO(d)×U(1). Such theories are important in a number of distinct situations, ranging from the hydrodynamics of graphene to flocking behaviour and the coarse-grained motion of self-propelled organisms. Furthermore, given the generality of this construction, we are are able to deduce special cases with higher symmetry by taking the appropriate limits. In this way we write the complete first-order theory of Lifshitz-invariant hydrodynamics. Among other results we present a class of non-dissipative first order theories which preserve parity.

Entire article

Phase I & II research project(s)

  • String Theory

No exceptional words for Bernoulli percolation

Invariance principle for a Potts interface along a wall

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved