SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Integrated correlators with a Wilson line in N=4 SYM

M. Billo', M. Frau, F. Galvagno, A. Lerda

31/8/23 Published in : arXiv:2308.16575

In the context of integrated correlators in N=4 SYM, we study the 2-point functions of local operators with a superconformal line defect. Starting from the mass-deformed N=2^∗ theory in presence of a 1/2-BPS Wilson line, we exploit the residual superconformal symmetry after the defect insertion, and show that the massive deformation corresponds to integrated insertions of the superconformal primaries belonging to the stress tensor multiplet with a specific integration measure which is explicitly derived after enforcing the superconformal Ward identities. Finally, we show how the Wilson line integrated correlator can be computed by the N=2^∗ Wilson loop vacuum expectation value on a 4-sphere in terms of a matrix model using supersymmetric localization. In particular, we reformulate previous matrix model computations by making use of recursion relations and Bessel kernels, providing a direct link with more general localization computations in N=2 theories.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Fixed-magnetization Ising model with a slowly varying magnetic field

A Note on the Binding Energy for Bosons in the Mean-field Limit

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved