SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Invariants of long knots

Rinat Kashaev

31/7/19 Published in : arXiv:1908.00118

By using the notion of a rigid R-matrix in a monoidal category and the Reshetikhin--Turaev functor on the category of tangles, we review the definition of the associated invariant of long knots. In the framework of the monoidal categories of relations and spans over sets, we illustrate the construction and the importance of consideration of long knots by introducing racks associated with pointed groups. Else, by using the restricted dual of algebras and Drinfeld's quantum double construction, we show that to any Hopf algebra H with invertible antipode, one can associate a universal long knot invariant Z_H(K) taking its values in the convolution algebra ((D(H))^o)^* of the restricted dual Hopf algebra (D(H))^o of the quantum double D(H) of H. That extends the known constructions of universal invariants in the case of finite dimensional Hopf algebras.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Proteins: the physics of amorphous evolving matter

Heat current in a dissipative quantum Hall edge

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved