SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Joint-measurability and quantum communication with untrusted devices

Michele Masini, Marie Ioannou, Nicolas Brunner, Stefano Pironio, Pavel Sekatski

21/3/24 Published in : arXiv:2403.14785

Photon loss represents a major challenge for the implementation of quantum communication protocols with untrusted devices, e.g. in the device-independent (DI) or semi-DI approaches. Determining critical loss thresholds is usually done in case-by-case studies. In the present work, we develop a general framework for characterizing the admissible levels of loss and noise in a wide range of scenarios and protocols with untrusted measurement devices. In particular, we present general bounds that apply to prepare-and-measure protocols for the semi-DI approach, as well as to Bell tests for DI protocols. A key step in our work is to establish a general connection between quantum protocols with untrusted measurement devices and the fundamental notions of channel extendibility and joint-measurability, which capture essential aspects of the communication and measurement of quantum information. In particular, this leads us to introduce the notion of partial joint-measurability, which naturally arises within quantum cryptography.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Quantum information and many body theory

Creative and geometric times in physics, mathematics, logic, and philosophy

Derivation of Yudovich solutions of Incompressible Euler from the Vlasov-Poisson system

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved