SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

A Large Twist Limit for Any Operator

Gwenaël Ferrando, Amit Sever, Adar Sharon, Elior Urisman

15/3/23 Published in : arXiv:2303.08852

We argue that for any single-trace operator in {\cal N}=4 SYM theory there is a large twist double-scaling limit in which the Feynman graphs have an iterative structure. Such structure can be recast using a graph-building operator. Generically, this operator mixes between single-trace operators with different scaling limits. The mixing captures both the finite coupling spectrum and corrections away from the large twist limit. We first consider a class of short operators with gluons and fermions for which such mixing problems do not arise, and derive their finite coupling spectra. We then focus on a class of long operators with gluons that do mix. We invert their graph-building operator and prove its integrability. The picture that emerges from this work opens the door to a systematic expansion of {\cal N}=4 SYM theory around the large twist limit.

Entire article

Phase I & II research project(s)

  • Field Theory

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Abelian sandpiles on cylinders

Mobile devices as experimental tools in physics education: some historical and educational background

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved