SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Mixing for Smooth Time-Changes of General Nilflows

Artur Avila, Giovanni Forni, Davide Ravotti, Corinna Ulcigrai

28/5/19 Published in : arXiv:1905.11628

We consider irrational nilflows on any nilmanifold of step at least 2. We show that there exists a dense set of smooth time-changes such that any time-change in this class which is not measurably trivial gives rise to a mixing nilflow. This in particular reproves and generalizes to any nilflow (of step at least 2) the main result proved in [AFU] for the special class of Heisenberg (step 2) nilflows, and later generalized in [Rav2] to a class of nilflows of arbitrary step which are isomorphic to suspensions of higher-dimensional linear toral skew-shifts.

Entire article

Phase I & II research project(s)

  • Geometry, Topology and Physics

Resurgence for superconductors

Rotation of the CMB polarisation by foreground lensing

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved