SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Noise-Robust and Loss-Tolerant Quantum Steering with Qudits

Vatshal Srivastav, Natalia Herrera Valencia, Will McCutcheon, Saroch Leedumrongwatthanakun, Sébastien Designolle, Roope Uola, Nicolas Brunner, Mehul Malik

18/2/22 Published in : arXiv:2202.09294

A primary requirement for a robust and unconditionally secure quantum network is the establishment of quantum nonlocal correlations over a realistic channel. While loophole-free tests of Bell nonlocality allow for entanglement certification in such a device-independent setting, they are extremely sensitive to loss and noise, which naturally arise in any practical communication scenario. Quantum steering relaxes the strict technological constraints of Bell nonlocality by re-framing it in an asymmetric manner, thus providing the basis for one-sided device-independent quantum networks that can operate under realistic conditions. Here we introduce a noise-robust and loss-tolerant test of quantum steering designed for single detector measurements that harnesses the advantages of high-dimensional entanglement. We showcase the improvements over qubit-based systems by experimentally demonstrating detection loophole-free quantum steering in 53 dimensions through simultaneous loss and noise conditions corresponding to 14.2 dB loss equivalent to 79 km of telecommunication fibre, and 36% of white noise. We go on to show how the use of high dimensions counter-intuitively leads to a dramatic reduction in total measurement time, enabling a quantum steering violation almost two orders of magnitude faster obtained by simply doubling the Hilbert space dimension. By surpassing the constraints imposed upon the device-independent distribution of entanglement, our loss-tolerant, noise-robust, and resource-efficient demonstration of quantum steering proves itself a critical ingredient for making device-independent quantum communication over long distances a reality.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Building separable approximations for quantum states via neural networks

Simulability of high-dimensional quantum measurements

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved