In this paper we establish an explicit relationship between Habiro's cyclotomic expansion of the colored Jones polynomial (evaluated at a p-th root of unity) and the Akutsu-Deguchi-Ohtsuki (ADO) invariants of the double twist knots. This allows us to compare the Witten-Reshetikhin-Turaev (WRT) and Costantino-Geer-Patureau (CGP) invariants of 3-manifolds obtained by 0-surgery on these knots. The difference between them is determined by the p-1 coefficient of the Habiro series. We expect these to hold for all Seifert genus 1 knots.