SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Nonlocal gravity and gravitational-wave observations

Enis Belgacem, Yves Dirian, Andreas Finke, Stefano Foffa, Michele Maggiore

3/7/19 Published in : arXiv:1907.02047

We discuss a modified gravity model which fits cosmological observations at a level statistically indistinguishable from \LambdaCDM and at the same time predicts very large deviations from General Relativity (GR) in the propagation of gravitational waves (GWs) across cosmological distances. The model is a variant of the RT nonlocal model proposed and developed by our group, with initial conditions set during inflation, and predicts a GW luminosity distance that, at the redshifts accessible to LISA or to a third-generation GW detector such as the Einstein Telescope (ET), can differ from that in GR by as much as 60%. An effect of this size could be detected with just a single standard siren with counterpart by LISA or ET. At the redshifts accessible to a LIGO/Virgo/Kagra network at target sensitivity the effect is smaller but still potentially detectable. Indeed, for the recently announced LIGO/Virgo NS-BH candidate S190814bv, the RT model predicts that, given the measured GW luminosity distance, the actual luminosity distance, and the redshift of an electromagnetic counterpart, would be smaller by as much as 7% with respect to the value inferred from \LambdaCDM.

Entire article

Phase I & II research project(s)

  • Field Theory

Cosmology and dark energy from joint gravitational wave-GRB observations

O(d,d) transformations preserve classical integrability

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved