SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Operators from mirror curves and the quantum dilogarithm

Rinat Kashaev, Marcos Mariño

5/1/15 Published in : arXiv:1501.01014

Mirror manifolds to toric Calabi-Yau threefolds are encoded in algebraic curves. The quantization of these curves leads naturally to quantum-mechanical operators on the real line. We show that, for a large number of local del Pezzo Calabi-Yau threefolds, these operators are of trace class. In some simple geometries, like local P2, we calculate the integral kernel of the corresponding operators in terms of Faddeev's quantum dilogarithm. Their spectral traces are expressed in terms of multi-dimensional integrals, similar to the state-integrals appearing in three-manifold topology, and we show that they can be evaluated explicitly in some cases. Our results provide further verifications of a recent conjecture which gives an explicit expression for the Fredholm determinant of these operators, in terms of enumerative invariants of the underlying Calabi-Yau threefolds.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory
  • Geometry, Topology and Physics

Wigner quantization of Hamilton-Dirac systems

Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved