SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Poncelet property and quasi-periodicity of the integrable Boltzmann system

Giovanni Felder

8/8/20 Published in : arXiv:2008.03480

We study the motion of a particle in a plane subject to an attractive central force with inverse-square law on one side of a wall at which it is reflected elastically. This model is a special case of a class of systems considered by Boltzmann which was recently shown by Gallavotti and Jauslin to admit a second integral of motion additionally to the energy. By recording the subsequent positions and momenta of the particle as it hits the wall we obtain a three dimensional discrete-time dynamical system. We show that this system has the Poncelet property: if for given generic values of the integrals one orbit is periodic then all orbits for these values are periodic and have the same period. The reason for this is the same as in the case of the Poncelet theorem: the generic level set of the integrals of motion is an elliptic curve, the Poincaré map is the composition of two involutions with fixed points and is thus the translation by a fixed element. Another consequence of our result is the proof of a conjecture of Gallavotti and Jauslin on the quasi-periodicity of the integrable Boltzmann system, implying the applicability of KAM perturbation theory to the Boltzmann system with weak centrifugal force.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Excess deviations for points disconnected by random interlacements

Planar random-cluster model: fractal properties of the critical phase

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved