SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Quantum Groups as Global Symmetries II. Coulomb Gas Construction

Barak Gabai, Victor Gorbenko, Jiaxin Qiao, Bernardo Zan, Aleksandr Zhabin

31/10/24 Published in : arXiv:2410.24143

We study a conformal field theory that arises in the infinite-volume limit of a spin chain with U_q(sl_2) global symmetry. Most operators in the theory are defect-ending operators which allows U_q(sl_2) symmetry transformations to act on them in a consistent way. We use Coulomb gas techniques to construct correlation functions and compute all OPE coefficients of the model, as well as to prove that the properties imposed by the quantum group symmetry are indeed satisfied by the correlation functions. In particular, we treat the non-chiral operators present in the theory. Free boson realization elucidates the origin of the defects attached to the operators. We also comment on the role of quantum group in generalized minimal models.

Entire article

Phase III direction(s)

  • Holography and bulk-boundary correspondence

Quantum Groups as Global Symmetries

Strict inequalities for arm exponents in planar percolation

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved