SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Rationality of descendent series for Hilbert and Quot schemes of surfaces

Drew Johnson, Dragos Oprea, Rahul Pandharipande

14/2/20 Published in : arXiv:2002.05861

Quot schemes of quotients of a trivial bundle of arbitrary rank on a nonsingular projective surface X carry perfect obstruction theories and virtual fundamental classes whenever the quotient sheaf has at most 1-dimensional support. The associated generating series of virtual Euler characteristics was conjectured to be a rational function when X is simply connected. We conjecture here the rationality of more general descendent series with insertions obtained from the Chern characters of the tautological sheaf. We prove the rationality of descendent series in Hilbert scheme cases for all curve classes and in Quot scheme cases when the curve class is 0.

Entire article

Phase I & II research project(s)

  • String Theory
  • Geometry, Topology and Physics

Simple Conformal Loop Ensembles on Liouville Quantum Gravity

Provenance of classical Hamiltonian time crystals

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved