SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Regularity of the superstring supermeasure and the superperiod map

Giovanni Felder, David Kazhdan, Alexander Polishchuk

30/5/19 Published in : arXiv:1905.12805

The supermeasure whose integral is the genus g vacuum amplitude of superstring theory is potentially singular on the locus in the moduli space of supercurves where the corresponding even theta-characteristic has nontrivial sections. We show that the supermeasure is actually regular for g\leq 11. The result relies on the study of the superperiod map. We also show that the minimal power of the classical Schottky ideal that annihilates the image of the superperiod map is equal to g if g is odd and is equal to g or g−1 if g is even.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Rotation of the CMB polarisation by foreground lensing

Symmetry results for critical anisotropic p-Laplacian equations in convex cones

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved