SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

On the resurgent structure of quantum periods

Jie Gu, Marcos Marino

7/11/22 Published in : arXiv:2211.03871

Quantum periods appear in many contexts, from quantum mechanics to local mirror symmetry. They can be described in terms of topological string free energies and Wilson loops, in the so-called Nekrasov-Shatashvili limit. We consider the trans-series extension of the holomorphic anomaly equations satisfied by these quantities, and we obtain exact multi-instanton solutions for these trans-series. Building on this result, we propose a unified perspective on the resurgent structure of quantum periods. We show for example that the Delabaere-Pham formula, which was originally obtained in quantum mechanical examples, is a generic feature of quantum periods. We illustrate our general results with explicit calculations for the double-well in quantum mechanics, and for the quantum mirror curve of local \mathbb{P}^2.

Entire article

Phase I & II research project(s)

  • String Theory
  • Geometry, Topology and Physics

Exact multi-instantons in topological string theory

Classical Lie Bialgebras for AdS/CFT Integrability by Contraction and Reduction

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2023 - All rights reserved