SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Revealing the fuel of a quantum continuous measurement-based refrigerator

Cyril Elouard, Sreenath K. Manikandan, Andrew N. Jordan, Geraldine Haack

14/2/25 Published in : arXiv:2502.10349

While quantum measurements have been shown to constitute a resource for operating quantum thermal machines, the nature of the energy exchanges involved in the interaction between system and measurement apparatus is still under debate. In this work, we show that a microscopic model of the apparatus is necessary to unambiguously determine whether quantum measurements provide energy in the form of heat or work. We illustrate this result by considering a measurement-based refrigerator, made of a double quantum dot embedded in a two-terminal device, with the charge of one of the dots being continuously monitored. Tuning the parameters of the measurement device interpolates between a heat- and a work-fueled regimes with very different thermodynamic efficiency. Notably, we demonstrate a trade-off between a maximal thermodynamic efficiency when the measurement-based refrigerator is fueled by heat and a maximal measurement efficiency quantified by the signal-to-noise ratio in the work-fueled regime. Our analysis offers a new perspective on the nature of the energy exchanges occurring during a quantum measurement, paving the way for energy optimization in quantum protocols and quantum machines.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Phase III direction(s)

  • Quantum information and many body theory

Transport approach to two-qubit quantum state tomography

Exploring the phase transition of planar FK-percolation

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved