SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

A Solvable Deformation Of Quantum Mechanics

Alba Grassi, Marcos Marino

15/6/18 Published in : arXiv:1806.01407

The conventional Hamiltonian H= p^2+ V_N(x), where the potential V_N(x) is a polynomial of degree N, has been studied intensively since the birth of Quantum Mechanics. In some cases, its spectrum can be determined by combining the WKB method with resummation techniques. In this paper we point out that the deformed Hamiltonian H=2 \cosh(p)+ V_N(x) is exactly solvable for any potential: an exact quantization condition, involving well-defined functions, can be written down in closed form, and determines the spectrum of bound states and resonances. In particular, no resummation techniques are needed. This Hamiltonian is obtained by quantizing the Seiberg-Witten curve of N=2 Yang-Mills theory, and the exact quantization condition follows from the correspondence between spectral theory and topological strings, after taking a suitable four-dimensional limit. In this formulation, conventional Quantum Mechanics emerges in a scaling limit near the Argyres-Douglas superconformal point in moduli space. Although our deformed version of Quantum Mechanics is in many respects similar to the conventional version, it also displays new phenomena, like spontaneous parity symmetry breaking.

Entire article

Phase I & II research project(s)

  • String Theory
  • Geometry, Topology and Physics

The Generation of Vorticity in Cosmological Large Scale Structure

Neural Tangent Kernel: Convergence and Generalization in Neural Networks

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved