SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Split Canonical Relations

Alberto S. Cattaneo, Ivan Contreras

25/11/18 Published in : arXiv:1811.10107

A Lagrangian subspace L of a weak symplectic vector space is called \emph{split Lagrangian} if it has an isotropic (hence Lagrangian) complement. When the symplectic structure is strong, it is sufficient for L to have a closed complement, which can then be moved to become isotropic. The purpose of this note is to develop the theory of compositions and reductions of split canonical relations for symplectic vector spaces. We give conditions on a coisotropic subspace C of a weak symplectic space V which imply that the induced canonical relation LC from V to C/C^ω is split, and, from these, we find sufficient conditions for split canonical relations to compose well. We prove that the canonical relations arising in the Poisson sigma model from the Lagrangian field theoretical approach are split, giving a description of symplectic groupoids integrating Poisson manifolds in terms of split canonical relations.

Entire article

Phase I & II research project(s)

  • Field Theory
  • Geometry, Topology and Physics

Graded Poisson Algebras

SUSY and the bi-vector

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved