SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Stable quotients and the holomorphic anomaly equation

Hyenho Lho, Rahul Pandharipande

20/2/17 Published in : arXiv:1702.06096

We study the fundamental relationship between stable quotient invariants and the B-model for local CP2 in all genera. Our main result is a direct geometric proof of the holomorphic anomaly equation in the precise form predicted by B-model physics. The method yields new holomorphic anomaly equations for an infinite class of twisted theories on projective spaces. An example of such a twisted theory is the formal quintic defined by a hyperplane section of CP4 in all genera via the Euler class of a complex. The formal quintic theory is found to satisfy the holomorphic anomaly equations conjectured for the true quintic theory. Therefore, the formal quintic theory and the true quintic theory should be related by transformations which respect the holomorphic anomaly equations.

Entire article

Phase I & II research project(s)

  • String Theory
  • Geometry, Topology and Physics

An alternative quadratic formula

Energy Dissipation in Hamiltonian Chains of Rotators

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved