SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Stringy CFT Duals with \mathcal{N} = (2,2) Supersymmetry

  • Matthias R. Gaberdiel
  • Jeremy A. Mann

23/10/19 Published in : arXiv:1910.10427

It was recently shown that string theory on \mathrm{AdS}_3 \times \mathrm{S}^3 \times \mathbb{T}^4 with minimal NS-NS flux (k=1) is exactly dual to the symmetric orbifold of T4. Here we show that a similar statement also holds for the D_n orbifolds of these backgrounds that have \mathcal{N} = (2,2) supersymmetry. In this case the CFT dual is the symmetric orbifold of \mathbb{T}^4/D_n.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

Logarithmic variance for the height function of square-ice

Edge rigidity and universality of random regular graphs of intermediate degree

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved