SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Tangible phenomenological thermodynamics

Philipp Kammerlander, Renato Renner

20/2/20 Published in : arXiv:2002.08968

In this paper, the foundations of classical phenomenological thermodynamics are being thoroughly revisited. A new rigorous basis for thermodynamics is laid out in the main text and presented in full detail in the appendix. All relevant concepts, such as work, heat, internal energy, heat reservoirs, reversibility, absolute temperature and entropy, are introduced on an abstract level and connected through traditional results, such as Carnot's Theorem, Clausius' Theorem and the Entropy Theorem. The paper offers insights into the basic assumptions one has to make in order to formally introduce a phenomenological thermodynamic theory. This contribution is of particular importance when applying phenomenological thermodynamics to systems, such as black holes, where the microscopic physics is not yet fully understood. Altogether, this work can serve as a basis for a complete and rigorous introduction to thermodynamics in an undergraduate course which follows the traditional lines as closely as possible.

Entire article

Phase I & II research project(s)

  • Quantum Systems

An Enumerative Approach to P=W

Generation of chiral asymmetry via helical magnetic fields

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved