SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Topological Josephson Junctions in the Integer Quantum Hall Regime

Gianmichele Blasi, Géraldine Haack, Vittorio Giovannetti, Fabio Taddei, Alessandro Braggio

4/11/22 Published in : arXiv:2211.02575

Robust and tunable topological Josephson junctions (TJJs) are highly desirable platforms for investigating the anomalous Josephson effect and topological quantum computation applications. Experimental demonstrations have been done in hybrid superconducting-two dimensional topological insulator (2DTI) platforms, sensitive to magnetic disorder and interactions with phonons and other electrons. In this work, we propose a robust and electrostatically tunable TJJ by combining the physics of the integer quantum Hall (IQH) regime and of superconductors. We provide analytical insights about the corresponding Andreev bound state spectrum, the Josephson current and the anomalous current. We demonstrate the existence of protected zero-energy crossings, that can be controlled through electrostatic external gates. This electrostatic tunability has a direct advantage to compensate for non-ideal interfaces and undesirable reflections that may occur in any realistic samples. TJJs in the IQH regime could be realized in graphene and other 2D materials. They are of particular relevance towards scalable and robust Andreev-qubit platforms, and also for efficient phase batteries.

Entire article

Phase I & II research project(s)

  • Quantum Systems

Discovery of Optimal Thermometers with Spin Networks aided by Machine-Learning

Bounds on photon scattering

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved