SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Trace as an alternative decategorification functor

Anna Beliakova, Zaur Guliyev, Kazuo Habiro, Aaron D. Lauda

3/9/14 Published in : arXiv:1409.1198

Categorification is a process of lifting structures to a higher categorical level. The original structure can then be recovered by means of the so-called "decategorification" functor. Algebras are typically categorified to additive categories with additional structure and decategorification is usually given by the (split) Grothendieck group. In this expository article we study an alternative decategorification functor given by the trace or the zeroth Hochschild--Mitchell homology. We show that this form of decategorification endows any 2-representation of the categorified quantum sl(n) with an action of the current algebra U(sl(n)[t]) on its center.

Entire article

Phase I & II research project(s)

  • Field Theory

Complex Quantum Chern-Simons

A Cheap Alternative to the Lattice?

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved