Emergent Planarity in 2-dimensional Ising Models with finite-range Interactions

Monday, 15 January, 2018

Published in: 

arXiv:1801.04960

The known Pfaffian structure of the boundary spin correlations, and more generally order-disorder correlation functions, is given a new explanation through simple topological considerations within the model's random current representation. This perspective is then employed in the proof that the Pfaffian structure of boundary correlations emerges asymptotically at criticality in Ising models on \mathbb Z^2 with finite-range interactions. The analysis is enabled by new results on the stochastic geometry of the corresponding random currents. The proven statement establishes an aspect of universality, seen here in the emergence of fermionic structures in two dimensions beyond the solvable cases.

Author(s): 

Michael Aizenman
Hugo Duminil-Copin
Vincent Tassion
Simone Warzel