SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Field Theory
    • Geometry, Topology and Physics
    • Quantum Systems
    • Statistical Mechanics
    • String Theory
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • News
  • Events
  • Online Events
  • Videos
  • Newsletters
  • Press Coverage
  • Perspectives Journal
  • Interviews

A-infinity Structures and Moduli Space

Mar 5, 2018 – May 28, 2018
ETHZ - Room HG G 43 Switzerland
#

Alexander Polishchuk (University of Oregon) is spending the spring semester as a SwissMAP guest professor at ETH Zurich. In this context, he will give a course on A-infinity structures and moduli spaces. The first lecture will held on March 5th, 2018.

 

Abstract

The concept of an A-infinity algebra, originally motivated by homotopy theory (as a more flexible version of Massey products), more recently featured in symplectic geometry and algebraic geometry, due to groundbreaking ideas of Fukaya and Kontsevich’s homological mirror symmetry program.

 

In my lectures I will start with basics of A-infinity algebras. In particular, I will discuss their deformation theory and explain how to construct A-infinity enhancement of derived categories using homological perturbations. I will then consider some examples arising from algebraic geometry.

 

From the point of view of establishing equivalences of A-infinity algebras, needed for homological mirror symmetry, it is important to study all possible A-infinity structures extending a given graded associative algebra. I will introduce the corresponding moduli problem and will show that in some cases there exists a fine moduli space parametrizing A-infinity structures. I will consider in detail examples of moduli spaces of A-infinity structures related to moduli spaces of curves.

 

Poster

 

Research project(s)

  • Field Theory
  • Geometry, Topology and Physics
  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2023 - All rights reserved