SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Field Theory
    • Geometry, Topology and Physics
    • Quantum Systems
    • Statistical Mechanics
    • String Theory
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Field Theory
  • Geometry, Topology and Physics
  • Quantum Systems
  • Statistical Mechanics
  • String Theory
  • Publications
  • SwissMAP Research Station

The appearance of particle tracks in detectors -- II: the semi-classical realm

Tristan Benoist, Martin Fraas, Jürg Fröhlich

19/2/22 Published in : arXiv:2202.09558

The appearance of tracks, close to classical orbits, left by charged quantum particles propagating inside a detector, such as a cavity periodically illuminated by light pulses, is studied for a family of idealized models. In the semi-classical regime, which is reached when one considers highly energetic particles, we present a detailed, mathematically rigorous analysis of this phenomenon. If the Hamiltonian of the particles is quadratic in position- and momentum operators, as in the examples of a freely moving particle or a particle in a homogeneous external magnetic field, we show how symmetries, such as spherical symmetry, of the initial state of a particle are broken by tracks consisting of infinitely many approximately measured particle positions and how, in the classical limit, the initial position and velocity of a classical particle trajectory can be reconstructed from the observed particle track.

Entire article

Research project(s)

  • Quantum Systems
  • Field Theory
  • Statistical Mechanics
  • Geometry, Topology and Physics

Irreversibility and the Arrow of Time

Towards a Dark Sector Model from String Theory

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2023 - All rights reserved