SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Bootstrapping Massive Quantum Field Theories

  • Denis Karateev
  • Simon Kuhn
  • Joao Penedones

18/12/19 Published in : arXiv:1912.08940

We propose a new non-perturbative method for studying UV complete unitary quantum field theories (QFTs) with a mass gap in general number of spacetime dimensions. The method relies on unitarity formulated as positive semi-definiteness of the matrix of inner products between asymptotic states (in and out) and states created by the action of local operators on the vacuum. The corresponding matrix elements involve scattering amplitudes, form factors and spectral densities of local operators. We test this method in two-dimensional QFTs by setting up a linear optimization problem that gives a lower bound on the central charge of the UV CFT associated to a QFT with a given mass spectrum of stable particles (and couplings between them). Some of our numerical bounds are saturated by known form factors in integrable theories like the sine-Gordon, E 8 and O(N) models.

Entire article

Phase I & II research project(s)

  • String Theory
  • Field Theory

Singularity of the spectrum for smooth area-preserving flows in genus two and translation surfaces well approximated by cylinders

Marginal triviality of the scaling limits of critical 4D Ising and ϕ_4^4 models

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved