SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

Marginal triviality of the scaling limits of critical 4D Ising and ϕ_4^4 models

  • Michael Aizenman
  • Hugo Duminil-Copin

17/12/19 Published in : arXiv:1912.07973

We prove that the scaling limits of spin fluctuations in four-dimensional Ising-type models with nearest-neighbor ferromagnetic interaction at or near the critical point are Gaussian. A similar statement is proven for the \lambda \phi^4 fields over \mathbb{R}^4 with a lattice ultraviolet cutoff, in the limit of infinite volume and vanishing lattice spacing. The proofs are enabled by the models' random current representation, in which the correlation functions' deviation from Wick's law is expressed in terms of intersection probabilities of random currents with sources at distances which are large on the model's lattice scale. Guided by the analogy with random walk intersection amplitudes, the analysis focuses on the improvement of the so-called tree diagram bound by a logarithmic correction term, which is derived here through multi-scale analysis.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Bootstrapping Massive Quantum Field Theories

A new renormalon in two dimensions

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved