We investigate certain large deviation asymptotics concerning random interlacements in Z^d, d bigger or equal to 3. We find the principal exponential rate of decay for the probability that the average value of some suitable non-decreasing local function of the field of occupation times, sampled at each point of a large box, exceeds its expected value. We express the exponential rate of decay in terms of a constrained minimum for the Dirichlet energy of functions on R^d that decay at infinity. An application concerns the excess presence of random interlacements in a large box. Our findings exhibit similarities to some of the results of van den Berg-Bolthausen-den Hollander in their work on moderate deviations of the volume of the Wiener sausage. An other application relates to recent work of the author on macroscopic holes in connected components of the vacant set in arXiv:1802.05255v2.