SwissMAP Logo
Log in
  • About us
    • Organization
    • Professors
    • Senior Researchers
    • Postdocs
    • PhD Students
    • Alumni
  • News & Events
    • News
    • Events
    • Online Events
    • Videos
    • Newsletters
    • Press Coverage
    • Perspectives Journal
    • Interviews
  • Research
    • Basic Notions
    • Phase III Directions
    • Phases I & II Projects
    • Publications
    • SwissMAP Research Station
  • Awards, Visitors & Vacancies
    • Awards
    • Innovator Prize
    • Visitors
    • Vacancies
  • Outreach & Education
    • Masterclasses & Doctoral Schools
    • Mathscope
    • Maths Club
    • Athena Project
    • ETH Math Youth Academy
    • SPRING
    • Junior Euler Society
    • General Relativity for High School Students
    • Outreach Resources
    • Exhibitions
    • Previous Programs
    • Events in Outreach
    • News in Outreach
  • Equal Opportunities
    • Mentoring Program
    • Financial Support
    • SwissMAP Scholars
    • Events in Equal Opportunities
    • News in Equal Opportunities
  • Contact
    • Corporate Design
  • Basic Notions
  • Phase III Directions
  • Phases I & II Projects
  • Publications
  • SwissMAP Research Station

On bulk deviations for the local behavior of random interlacements

Alain-Sol Sznitman

13/6/19 Published in : arXiv:1906.05809

We investigate certain large deviation asymptotics concerning random interlacements in Z^d, d bigger or equal to 3. We find the principal exponential rate of decay for the probability that the average value of some suitable non-decreasing local function of the field of occupation times, sampled at each point of a large box, exceeds its expected value. We express the exponential rate of decay in terms of a constrained minimum for the Dirichlet energy of functions on R^d that decay at infinity. An application concerns the excess presence of random interlacements in a large box. Our findings exhibit similarities to some of the results of van den Berg-Bolthausen-den Hollander in their work on moderate deviations of the volume of the Wiener sausage. An other application relates to recent work of the author on macroscopic holes in connected components of the vacant set in arXiv:1802.05255v2.

Entire article

Phase I & II research project(s)

  • Statistical Mechanics

Spines for amoebas of rational curves

Flux Tube S-matrix Bootstrap

  • Leading house

  • Co-leading house


The National Centres of Competence in Research (NCCRs) are a funding scheme of the Swiss National Science Foundation

© SwissMAP 2025 - All rights reserved